T cell receptor transgenic lymphocytes infiltrating murine tumors are not induced to express foxp3

نویسندگان

  • Jon G Quatromoni
  • Lilah F Morris
  • Timothy R Donahue
  • Yue Wang
  • William McBride
  • Talal Chatila
  • James S Economou
چکیده

Regulatory T cells (Treg) that express the transcription factor Foxp3 are enriched within a broad range of murine and human solid tumors. The ontogeny of these Foxp3 Tregs - selective accumulation or proliferation of natural thymus-derived Treg (nTreg) or induced Treg (iTreg) converted in the periphery from naïve T cells - is not known. We used several strains of mice in which Foxp3 and EGFP are coordinately expressed to address this issue. We confirmed that Foxp3-positive CD4 T cells are enriched among tumor-infiltrating lymphocytes (TIL) and splenocytes (SPL) in B16 murine melanoma-bearing C57BL/6 Foxp3(EGFP) mice. OT-II Foxp3(EGFP) mice are essentially devoid of nTreg, having transgenic CD4 T cells that recognize a class II-restricted epitope derived from ovalbumin; Foxp3 expression could not be detected in TIL or SPL in these mice when implanted with ovalbumin-transfected B16 tumor (B16-OVA). Likewise, TIL isolated from B16 tumors implanted in Pmel-1 Foxp3(EGFP) mice, whose CD8 T cells recognize a class I-restricted gp100 epitope, were not induced to express Foxp3. All of these T cell populations - wild-type CD4, pmel CD8 and OTII CD4 - could be induced in vitro to express Foxp3 by engagement of their T cell receptor (TCR) and exposure to transforming growth factor β (TGFβ). B16 melanoma produces TGFβ and both pmel CD8 and OTII CD4 express TCR that should be engaged within B16 and B16-OVA respectively. Thus, CD8 and CD4 transgenic T cells in these animal models failed to undergo peripheral induction of Foxp3 in a tumor microenvironment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Population of FoxP3+ T Cells in Tumors Requires an Antigen Priming-Dependent Trafficking Receptor Switch

FoxP3(+) T cells populate tumors and regulate anti-tumor immunity. The requirement for optimal population of FoxP3(+) regulatory T cells in tumors remains unclear. We investigated the migration requirement and stability of tumor-associated FoxP3(+) T cells. We found that only memory, but not naïve, FoxP3(+) T cells are highly enriched in tumors. Almost all of the tumor-infiltrating FoxP3(+) T c...

متن کامل

Analysis of the T-cell receptor repertoires of tumor-infiltrating conventional and regulatory T cells reveals no evidence for conversion in carcinogen-induced tumors.

A significant enrichment of CD4(+)Foxp3(+) T cells (regulatory T cells, Treg) is frequently observed in murine and human carcinomas. As Tregs can limit effective antitumor immune responses, thereby promoting tumor progression, it is important that the mechanisms underpinning intratumoral accumulation of Tregs are identified. Because of evidence gathered mostly in vitro, the conversion of conven...

متن کامل

Microenvironment and Immunology The T-cell Receptor Repertoire of Tumor-Infiltrating Regulatory T Lymphocytes Is Skewed Toward Public Sequences

The accumulation of CD4þ T regulatory cells (Treg) in tumor tissue is a widely described phenomenon in mouse models and in human cancer patients. Understanding the mechanisms by which Treg migrate and accumulate in tumors is important because they strongly influence the potential efficacy of many immunotherapies. In this study, we used immunoscope technology to analyze the T-cell receptor (TCR)...

متن کامل

Expression of neuropilin-1 on in vivo induced regulatory T cells

One of the current questions surrounding CD4 T regulatory cells (Tregs) is the role of natural and induced Tregs in tumor tolerance. Natural Tregs are CD4 T cells that leave the thymus expressing FoxP3 and displaying regulatory potential. Induced Tregs leave the thymus as a naïve CD4 T cell (FoxP3-), but are skewed by conditions encountered during antigen recognition to express FoxP3 and gain r...

متن کامل

Advantages of Foxp3+ regulatory T cell depletion using DEREG mice

Several mechanisms enable immunological self-tolerance. Regulatory T cells (Tregs) are a specialized T cell subset that prevents autoimmunity and excessive immune responses, but can also mediate detrimental tolerance to tumors and pathogens in a Foxp3-dependent manner. Genetic tools exploiting the foxp3 locus including bacterial artificial chromosome (BAC)-transgenic DEREG mice have provided es...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2011